# The resiliency of urban water systems

Kathleen Low, Stanley Grant, David Feldman, Michael Stewardson, Ashmita Sengupta

University of California, Irvine





#### Water Stress in California



- Inter-basin transfer
  - Ecosystem collapse of Sacramento-San Joaquin Delta
  - Energy and GHG emissions (19% electricity and 30% natural gas of total state's usage, 88 billion gallons of diesel fuel+/yr)
  - Diminished resiliency (climate, earthquakes, terrorism)
- Population growth (15.7 to 37.3 million from 1960 to 2010)
- Climate change (drought, climate variability)

Pic. source: http://en.wikipedia.org/wiki/Sacramento%E 2%80%93San\_Joaquin\_River\_Delta

# California Water Conservation Act of 2009

- In response to 2007-2009
   Drought
- 20 x 2020 Plan
  - Reduce per capita potable water use 20% by 2020

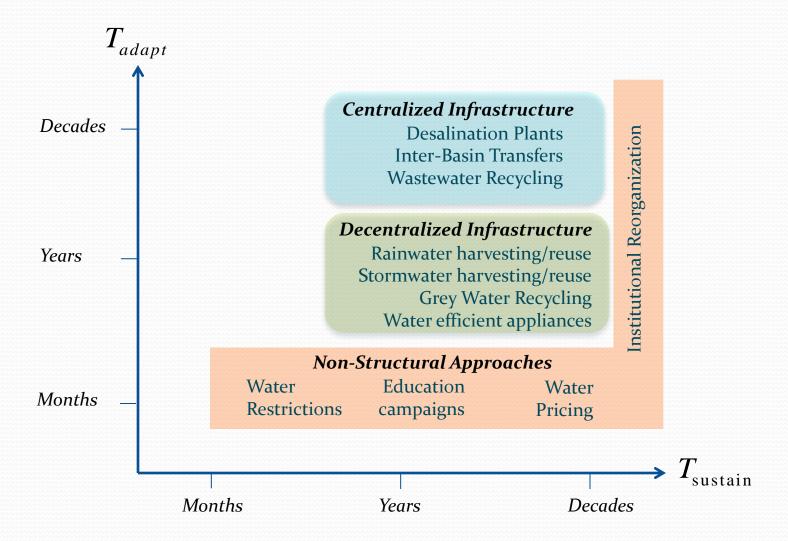


#### Learning from Melbourne, Australia

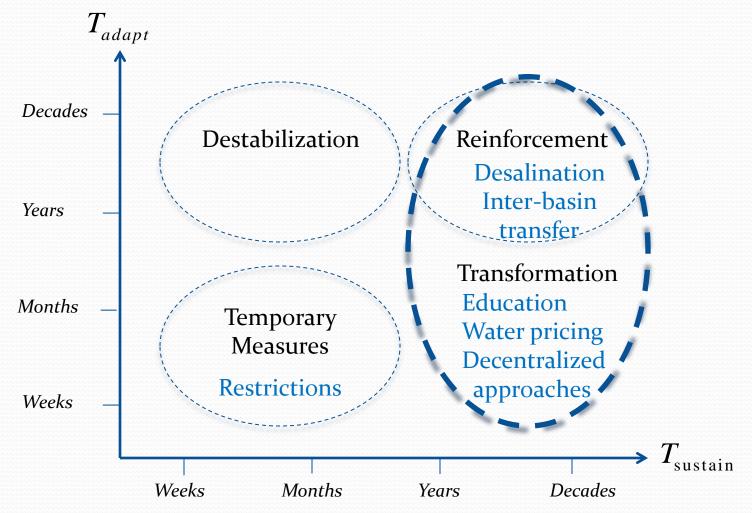
- Long history of droughts
- Urban water management is more advanced in drought management
- Response to Millennium Drought (1997-2009) considered successful in some ways
  - 46% decrease per capita potable water consumption (458 to 247 L/person-day)

## Purpose of study

- Characterize drought management response
- Model water consumption changes during drought
  - Case study: Melbourne, Australia
- Implications for integrated water management for a resilient system


#### **Characterizing** Drought

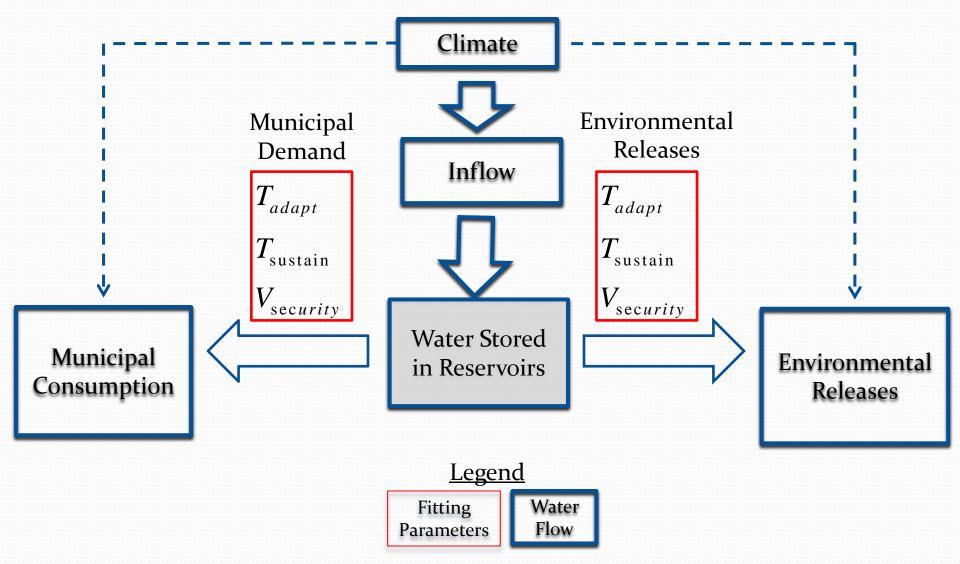
#### Management Response


Propose characterizing response by:

- *T*<sub>*adapt*</sub> : Time it takes for the socio-hydrological system to reduce water consumption after the onset of drought
- *T*<sub>sustain</sub> : Time a socio-hydrological system continues to practice reduced water consumption after the drought has passed
- *V*<sub>security</sub>: Storage volume of water to feel "water secure"

#### **Drought Management Response**

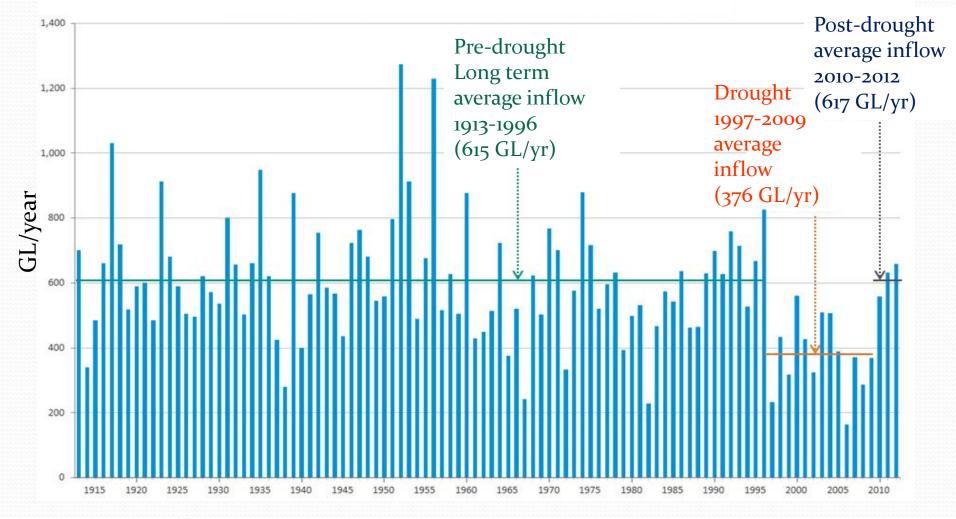



#### **Drought Management Response**



#### Modeling Approach

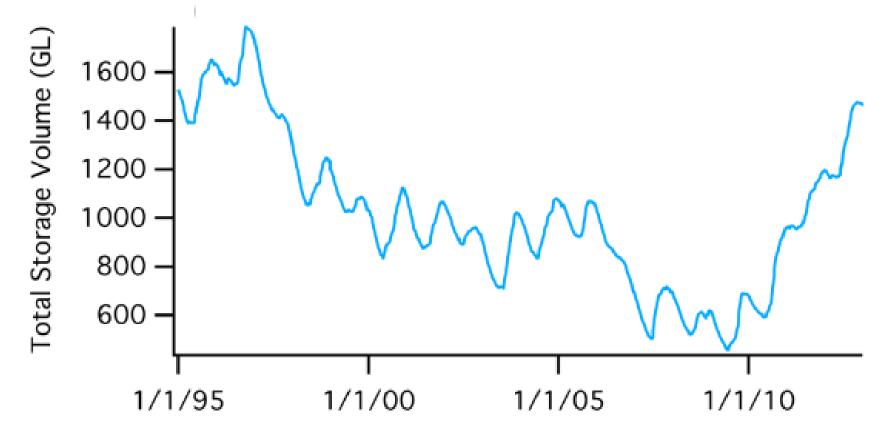
- Two-state water demand: drought vs. non-drought
- Convolution integral models transitions between drought and non-drought states
- Volume balance:
  - reservoir levels
  - municipal demand
  - environmental releases
- Model outputs:
  - $T_{adapt}$ ,  $T_{sustain}$ ,  $V_{security}$  for municipal demand and environmental releases
- Applied to Melbourne, Australia


#### **Modeling Gradual Water Conservation**



## Modeling applied to Melbourne

- Use Millennium Drought to determine the values of timescales and security volume
- Model application to Millennium Drought
  - Monthly time step
  - Years 1995-2012
  - Water data from Melbourne Water
  - Climate data from Australian Bureau of Meteorology
  - Population data from Australian Bureau of Statistics


## Melbourne Millennium Drought: Decreased Inflow from 1997-2009



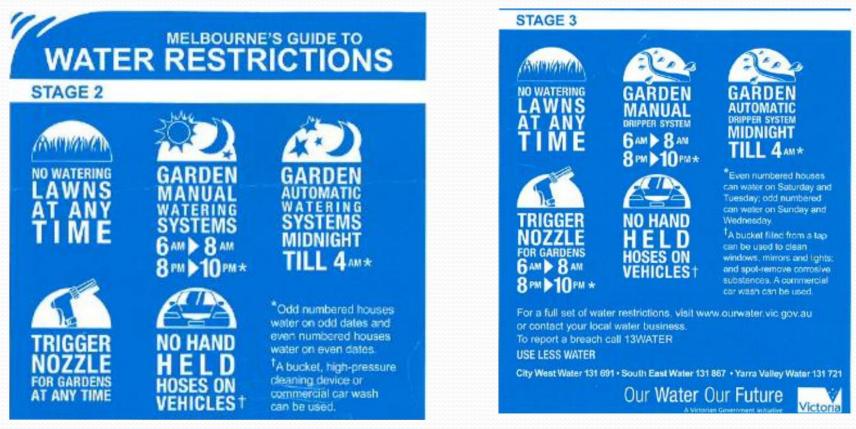
Source: www.melbournewater.com.au

## Melbourne Millennium Drought:

#### **Reservoir Storage**



Reservoirs dropped to historic lows of below 20% capacity in 2007 Fig Source: Grant et al. 2013


- Public Education ( $\downarrow T_{adapt}$ ,  $\uparrow T_{sustain}$ , transformative)
  - Water storage levels on TV, radio, newsprints, billboards



Pic source: www.theage.com.au

• Restrictions: ( $\downarrow T_{adapt}, \downarrow T_{sustain}$ , temporary measure)

• Stages from 1 to 4 based on water levels in reservoirs



Pic. Source: Melbourne Water, Managing Water Supplies for Climate Change and Variability— Melbourne, Aus.

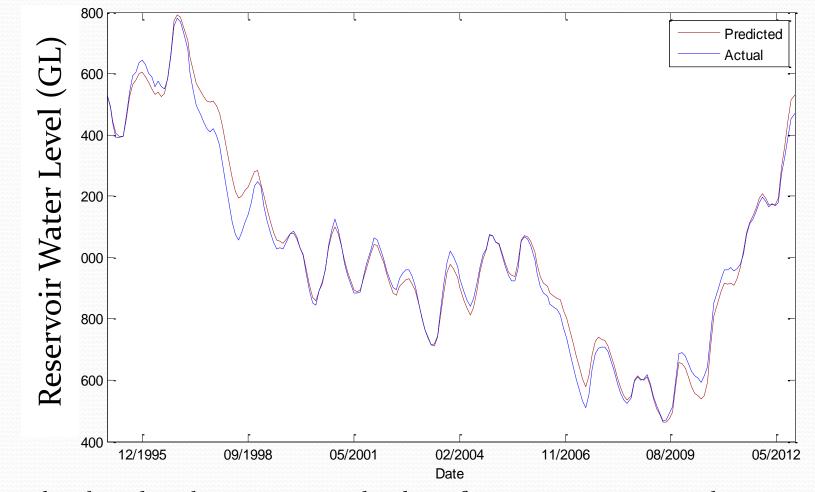
• Substitution Targets ( $\downarrow \uparrow T_{adapt}, \uparrow T_{sustain}$ , transformative)

- Reused 22.8% of wastewater inflows by 2009/2010
- Stormwater and rainwater harvesting (3% of annual municipal demand)



Rainwater collection water tank. Pic. Source: <u>http://www.sustainablemelbourne.com/tag/rainwater-harvesting/</u>

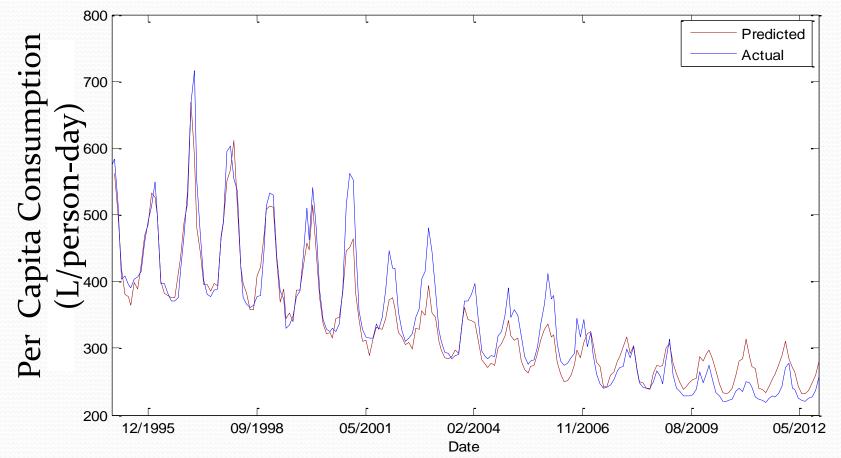



Pic. Source: Grant et al. 2013

- Pricing (  $\downarrow T_{adapt}$ ,  $\uparrow T_{sustain}$ , transformative)
  - 5% environmental levy
  - Introduction of 3-tier block tariff pricing (from 2-tier system)

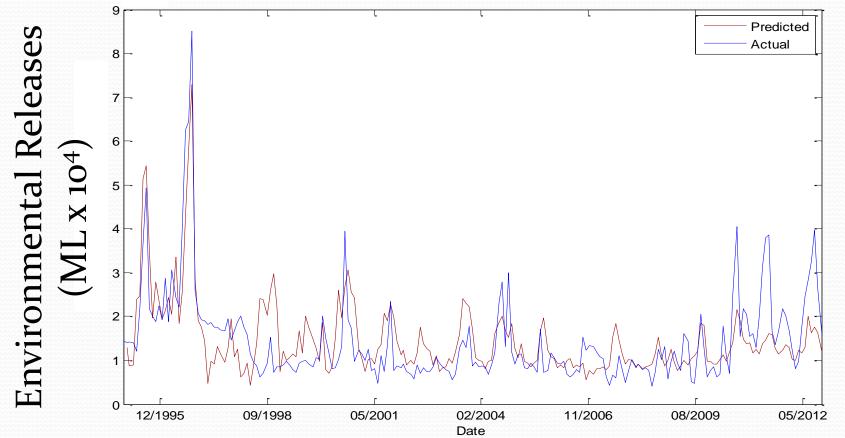
|  |   |                          | 2013/2014 Residential Usage Charges |                                   |                        |  |  |  |  |  |  |
|--|---|--------------------------|-------------------------------------|-----------------------------------|------------------------|--|--|--|--|--|--|
|  |   |                          | Step 1                              | 0 - 440 litres of water per day   | \$2.5970 per kilolitre |  |  |  |  |  |  |
|  | 5 | Yarra<br>Valley<br>Water | Step 2                              | 441 - 880 litres of water per day | \$3.0469 per kilolitre |  |  |  |  |  |  |
|  | 2 | Water                    | Step 3                              | 881+ litres of water per day      | \$4.5017 per kilolitre |  |  |  |  |  |  |
|  |   |                          | Recycled water                      | All usage                         | \$2.2074 per kilolitre |  |  |  |  |  |  |

Fig. source: Yarra Valley Water, www.yvw.com.au


#### **Results: Reservoir levels**

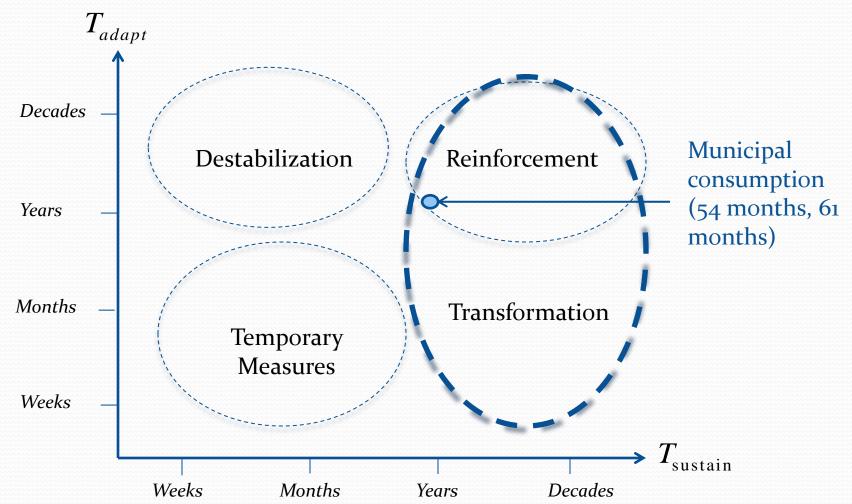


Actual and predicted reservoir water levels. R<sup>2</sup> for Reservoir Water Level is 0.98.


#### Results: Per capita municipal

#### consumption



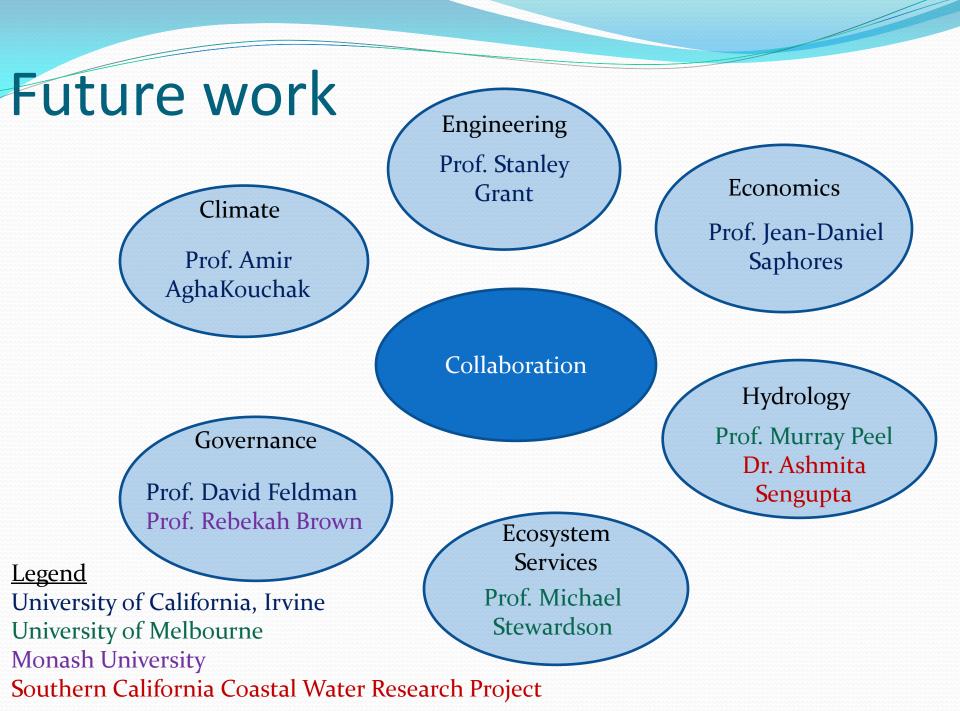

Monthly time series of Per capita Water Consumption model results from Jan 1997-Nov 2012. R<sup>2</sup> is 0.90. Non-drought and drought periods defined by Jan 1995- Dec 1996 and Jan 2010-Nov 2012, respectively.

#### **Results: Environmental Release**



Monthly time series of Environmental Release model results from Jan 1997-Nov 2012. R<sup>2</sup> is 0.50. Non-drought and drought periods defined as Jan 1995-Dec 1996 and Jan 1999 to Dec 2009.

#### **Drought Management Response**




## Summary of model results

- Simple model does reasonable job of fitting data
- Reservoir security volume is the same for environmental releases and per capita consumption

#### Future work

- Use climate predictions for the next 100 years to explore:
  - How values of *T*<sub>adapt</sub> and *T*<sub>sustain</sub> interact with climate predictions to predict "vulnerabilities" and "opportunities"
  - Relate *T<sub>adapt</sub>* and *T<sub>sustain</sub>* to fine-scale decisions about water use in in urban communities (collaborating with researchers at Monash University who are using agent based models to study water use choices).



#### Conclusion



Sacramento-San Joaquin Water System Pic Source: CA Drying Up, KPBS.org  California is water stressed and needs to incorporate more sustainable practices

- Potable water conservation is a top priority
- 20x2020 Plan meant to conserve water or find savings from nontraditional sources

## Conclusion

#### Proposed model:

- captures water usage change over time
- characterizes

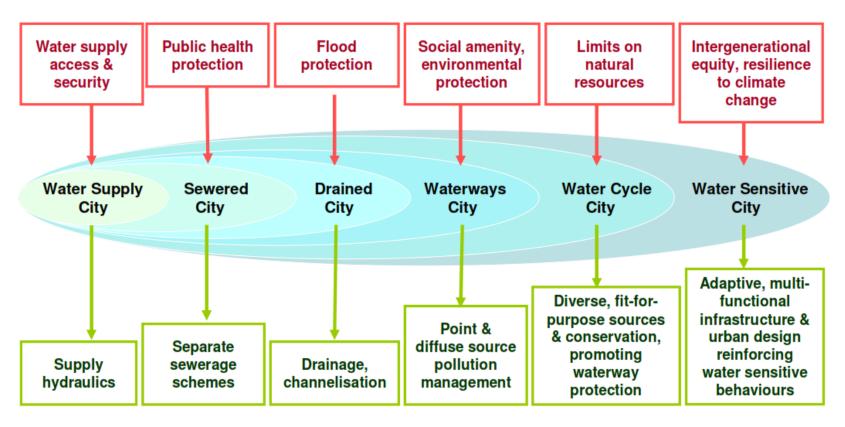
   management practices
   for meeting immediate
   short falls vs. cultivating
   sustained actions
- is a tool to evaluate policy and strategic planning to increase resiliency in urban water systems



Fig. Source: Hoban and Wong (2006), www.waterbydesign.com.au

#### Thank you! Questions?

## References


- J. Rijke, M. Farrelly, R. Brown; C. Zevenbergen, Configuring transformative governance to enhance resilient urban water systems. *Environ. Sci. & Policy*, **25**, 62-72 (2013).
- N.A. Keath, R.R. Brown, Extreme events: being prepared for the pitfalls with progressing sustainable urban water management. Water Sci. & Tech. **59**(7), 1271-1280 (2009).

- S.B. Grant, T.D. Fletcher, A.J. Hamilton, D. Feldman, J.D. Saphores, P.L.M. Cook, M. Stewardson, K. Low, K. Burry, Adapting urban water systems to a changing climate: lessons from the Millennium Drought in Southeast Australia, Environ. Sci. & Tech., (2013) doi:10.1021/es400618z.
- L. Werbeloff, R.R. Brown, Working towards sustainable urban water management: the vulnerability blind spot. *Water Sci.&Tech.* **64**(12), 2362-2369.
- S.L. Zhou, T.A. McMahon, A. Walton, J. Lewis, Forecasting daily urban water demand: a case study of Melbourne. *J. Hydrology* 236, 153-164 (2000).
- Water Outlook for Melbourne: A new approach for managing water supply security, November 2011.
- Department of Sustainability and Environment, Analysis of Potential System Behavior
- Yarra Valley Water, 2012 Residential Water Use Study, Vol.
- Victorian Water, 2005 Victorian Uniform Drought Water Restriction Guidelines
- WHO, Vision 2030 The resilience of water supply and sanitation in the face of climate change Technology Fact Sheets. http://www.who.int/water\_sanitation\_health/publications/vision2030\_fact\_sheet.pdf Retrieved: 9/4/13
- California Energy Commission, Water-Related Energy Use in California. Feb 20, 2007 http://www.energy.ca.gov/2007publications/CEC-999-2007-008/CEC-999-2007-008.PDF Retrieved: 9/4/13
- B. Rhodes, Managing Water Supplies for Climate Change and Variability—Melbourne, Australia. http://siteresources.worldbank.org/EXTWAT/Resources/4602122-1215104787836/5.CC\_Managing\_Water\_Supplies\_Melbourne.pdf Retrieved: 9/4/13
- California Department of Water Resources, 20x2020 Water Conservation Plan. Feb. 2010 www.water.ca.gov/wateruseefficiency/sb7/docs/20x2020plan.pdf Retrieved: 9/4/13
- California Department of Water Resources. 2009 Comprehensive Water Package. Nov. 2009 www.water.ca.gov/legislation/docs/01272010waterpackage.pdf Retrieved: 9/4/13
- State of California National Resources Agency and California Dept. of Water Resources. California's Drought of 2007-2009. Sept. 2010. www.water.ca.gov/waterconditions/drought/docs/DroughtReport2010.pdf Retrieved: 9/4/13

#### Extra slides

#### Urban Water Management Transitions: Resiliency for meeting today's and tomorrow's challenges

**Cumulative Socio-Political Drivers** 



**Service Delivery Functions** 

Fig Source: Brown et al. (2008) 11<sup>th</sup> International Conf. on Urban Drainage, Edinburgh, UK

#### Melbourne Water Budget

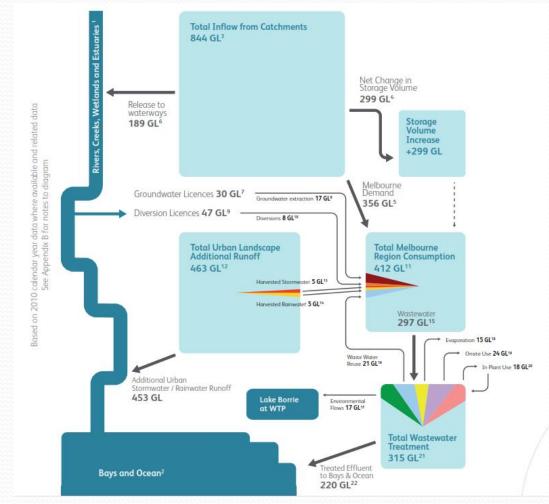



Fig. Source: Victoria State Government, DSE, Living Melbourne, Living Victoria Roadmap (2011)

#### Melbourne water restrictions

#### 5.1 Water Restriction Levels and Duration

| Water Restrictions Stage | Start Date     |  |  |  |  |
|--------------------------|----------------|--|--|--|--|
| Stage 1                  | November 2002  |  |  |  |  |
| Stage 2                  | August 2003    |  |  |  |  |
| PWSR                     | March 2005     |  |  |  |  |
| Stage 1                  | September 2006 |  |  |  |  |
| Stage 2                  | November 2006  |  |  |  |  |
| Stage 3                  | January 2007   |  |  |  |  |
| Stage 3a                 | April 2007     |  |  |  |  |
| Stage 3a + T155          | December 2008  |  |  |  |  |
| Stage "3" + T155         | April 2010     |  |  |  |  |
| Stage 2                  | September 2010 |  |  |  |  |
| Stage 1                  | December 2011  |  |  |  |  |

Source: Appendix from Yarra Valley Water , Residential Water Use Study, V2: summer 2012

### Melbourne water restrictions

| Level of Drought Response | Triggers as Volume in Total System Storage (Gigalitres) |       |       |       |       |       |       |       |       |       |       |       |
|---------------------------|---------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                           | Jan                                                     | Feb   | Mar   | Apr   | May   | Jun   | Jul   | Aug   | Sep   | Oct   | Nov   | Dec   |
| Early Warning             | 1,167                                                   | 1,141 | 1,089 | 1,063 | 1,055 | 1,036 | 1,055 | 1,092 | 1,141 | 1,167 | 1,197 | 1,182 |
| Voluntary Reduction       | 1,006                                                   | 980   | 927   | 901   | 894   | 875   | 894   | 931   | 980   | 1,006 | 1,036 | 1,021 |
| Stage 1                   | 925                                                     | 899   | 847   | 821   | 813   | 795   | 813   | 851   | 899   | 925   | 955   | 940   |
| Stage 2                   | 790                                                     | 773   | 738   | 720   | 715   | 703   | 715   | 740   | 773   | 790   | 810   | 800   |
| Stage 3                   | 655                                                     | 646   | 629   | 620   | 618   | 611   | 618   | 630   | 646   | 655   | 665   | 660   |
| Stage 4                   | 520                                                     | 520   | 520   | 520   | 520   | 520   | 520   | 520   | 520   | 520   | 520   | 520   |

Source: Yarra Valley Water Drought Response Plan 2010,

http://www.docstoc.com/docs/40604924/DROUGHT-RESPONSE-PLAN-FOR-YARRA-VALLEY-WATER