Progress Report (PIRE Work: 2013)

3 Major Projects:

- 1) Surface Microlayers as Contaminant Hotspots in LID Systems
- 2) Spatial & Temporal Variability of Pesticides in Stormwater Runoff
- 3) Tradeoffs in Pollutant Removal Efficiency by Biofilters: optimized WSUD systems

Surface Microlayers in LID Systems: pollutant partitioning hotspots?

The surface microlayer is a naturally occurring thin-film $(\sim 60 \text{ um thick})$ on the surface of aquatic systems

Microlayers can concentrate some pollutants:

- heavy metals (Pb, Zn, & Cu),
- polycyclic aromatic hydrocarbons
- petroleum hydrocarbons, &
- some triazine pesticides

Little is known about freshwater microlayers (research has focused on sea and estuarine microlayers)

In particular, microlayer – bulk water contaminant partitioning in freshwater, urban, LID systems is understudied

Contaminant partitioning affects pollutant removal and thus LID function

Contaminants in surface microlayers might:

- form films on plants or soils that negatively impact wildlife
- experience enhanced photodegredation (and thus enhanced removal)
- volatilize (thereby avoiding treatment)
- be efficiently removed by a rotating drum or skimmer prior to treatment (**1**LID longevity)

Project Goals

Evaluate the following:

Do surface microlayers form in freshwater LID systems like constructed wetlands and biofilters?

Do contaminants partition preferentially into the microlayer?

Can excitation-emission fluorescence spectroscopy be used as a cost-effective proxy for detecting;

1) surface microlayer presence, and/or

2) the partitioning of anthropogenic contaminants between microlayer and bulk water?

LID Field Sites

BAN

BP

- 4 LID systems were sampled in Melbourne, AU
 - BAN: wetland-biofilter treatment train
 - BP: ornamental pond
 - NP: a stormwater retention basin
 - HRW: a constructed wetland

Sampling:

- Paired subsurface (bulk) water and microlayer samples were collected at each site
- Samples were analyzed for:
 - \rightarrow Micropollutants: Total Petroleum Hydrocarbons & Trihalomethanes
 - \rightarrow Fluorescent compounds: EEM fluorescence microscopy

NP

HRW

Micropollutant Measurements

Both types of micropollutants were detected:

- Total Petroleum Hydrocarbons (C10-C14 - C29-C36)

- \rightarrow road runoff
- \rightarrow sewage

- Trihalomethanes (Chloroform)

- \rightarrow industrial waste (refrigerator manufacture)
- \rightarrow pools/hot-tubs (disinfectant byproduct)
- \rightarrow recycled water / treated effluent

(disinfectant byproduct)

Chemical Type	Analytes	Detect Lim.	BAN S	BP S	NP S	HRW S	
	Detected	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	
Total	TPH C10-C14	164		492			· · · · · · · · · · · · · · · · · · ·
Petroleum	TPH C15-C28	410		17220	410		Microlaver
Hydrocarbons	TPH C29-C36	410		1230			
Trihalomethanes	Chloroform	4.1			4.1	7.8	
	Total Trihalomethanes	4.1			4.1	7.8	

Chamical Trme	Analytes	Detect Lim.	BAN B	BP B	NP B	HRW B]
Chemical Type	Detected	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	
Total	TPH C10-C14	164]
Petroleum	TPH C15-C28	410					Bulk
Hydrocarbons	TPH C29-C36	410]
Trihalomethanes	Chloroform	4.1]
	Total Trihalomethanes	4.1]

Micropollutant Measurements

Both types of micropollutants were detected:

- Total Petroleum Hydrocarbons (C10-C14 C29-C36)
 - \rightarrow road runoff
 - \rightarrow sewage
- Trihalomethanes (Chloroform)
 - \rightarrow industrial waste (refrigerator manufacture)
 - \rightarrow pools/hot-tubs (disinfectant byproduct)
 - \rightarrow recycled water / treated effluent

(disinfectant byproduct)

Micropollutants were NEVER detected in bulk water

Chemical Type	Analytes	Detect Lim.	BAN S	BP S	NP S	HRW S	
	Detected	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	
Total	TPH C10-C14	164		492			
Petroleum	TPH C15-C28	410		17220	410		Microlaver
Hydrocarbons	TPH C29-C36	410		1230			
Trihalomethanes	Chloroform	4.1			4.1	7.8	
	Total Trihalomethanes	4.1			4.1	7.8	

Chemical Type	Analytes	Detect Lim.	BAN B	BP B	NP B	HRW B	
	Detected	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	
Total	TPH C10-C14	164					
Petroleum	TPH C15-C28	410					Bulk
Hydrocarbons	TPH C29-C36	410					
Trihalomethanes	Chloroform	4.1					
	Total Trihalomethanes	4.1					

Micropollutant Measurements

Both types of micropollutants were detected:

- Total Petroleum Hydrocarbons (C10-C14 C29-C36)
 - \rightarrow road runoff
 - \rightarrow sewage
- Trihalomethanes (Chloroform)
 - \rightarrow industrial waste (refrigerator manufacture)
 - \rightarrow pools/hot-tubs (disinfectant byproduct)
 - \rightarrow recycled water / treated effluent

(disinfectant byproduct)

Micropollutants were NEVER detected in bulk water

BAN has no evidence of a chemically defined surface microlayer

Chemical Type	Analytes Detected	Detect Lim. (ug/L)	BAN S (ug/L)	BP S (ug/L)	NP S (ug/L)	HRW S (ug/L)	
Total	TPH C10-C14	164		492			
Petroleum	TPH C15-C28	410		17220	410		Mid
Hydrocarbons	TPH C29-C36	410		1230			
Trihalomethanes	Chloroform	4.1			4.1	7.8	
	Total Trihalomethanes	4.1			4.1	7.8	

Analytes	Detect Lim	•	BAN B	Т	BP B	NP B	HRW B	
Detected	(ug/L)		(ug/L)		(ug/L)	(ug/L)	(ug/L)	
TPH C10-C14	164]
TPH C15-C28	410							Bulk
TPH C29-C36	410]
Chloroform	4.1							
Total Trihalomethanes	4.1							
	Analytes Detected TPH C10-C14 TPH C15-C28 TPH C29-C36 Chloroform Total Trihalomethanes	Analytes DetectedDetect Lim (ug/L)TPH C10-C14164TPH C15-C28410TPH C29-C36410Chloroform4.1Total Trihalomethanes4.1	Analytes DetectedDetect Lim. (ug/L)TPH C10-C14164TPH C15-C28410TPH C29-C36410Chloroform4.1Total Trihalomethanes4.1	Analytes Detected Detect Lim. (ug/L) BAN B (ug/L) TPH C10-C14 164 TPH C15-C28 410 TPH C29-C36 410 Chloroform 4.1 Total Trihalomethanes 4.1	Analytes Detect Lim. (ug/L) BAN B (ug/L) TPH C10-C14 164 TPH C15-C28 410 TPH C29-C36 410 Chloroform 4.1 Total Trihalomethanes 4.1	Analytes Detected Detect Lim. (ug/L) BAN B (ug/L) BP B (ug/L) TPH C10-C14 164 TPH C15-C28 410 TPH C29-C36 410 Chloroform 4.1 Total Trihalomethanes 4.1	Analytes Detected Detect Lim. (ug/L) BAN B (ug/L) BP B (ug/L) NP B (ug/L) TPH C10-C14 164 TPH C15-C28 410 TPH C29-C36 410 Chloroform 4.1 Total Trihalomethanes 4.1	Analytes Detected Detect Lim. (ug/L) BAN B (ug/L) BP B (ug/L) NP B (ug/L) HRW B (ug/L) TPH C10-C14 164 TPH C15-C28 410 TPH C29-C36 410 Chloroform 4.1 Total Trihalomethanes 4.1

Microlayer Detection using Fluorescence: Excitation-Emission Spectra

5 different peaks were identified

- A: UV Humic-like
- C1: Fulvic-like (ubiquitous)
- C2: VIS Humic-like (terrestrial)
- B: Tyrosine-like (microbial)
- T: Tryptophan-like (microbial)

Peak composition was different in bulk vs. microlayer waters at all sites except BAN <u>consistent with micropollutant results</u>

> The surface microlayer can be detected by fluorescence in LID systems

Microlayer Detection using Fluorescence: Excitation-Emission Spectra

5 different peaks were identified

A: UV Humic-like

C1: Fulvic-like (ubiquitous)

C2: VIS Humic-like (terrestrial)

B: Tyrosine-like (microbial)

anthropogenic inputs

T: Tryptophan-like (microbial)-

Peak composition was different in bulk vs. microlayer waters at all sites except BAN <u>consistent with micropollutant results</u>

> Can we detect pollutant partitioning into microlayer vs. bulk waters using fluorescence?

Tracking Anthropogenic Inputs Using Fluorescence

- Microlayer and bulk samples for most sites group together
- HRW looks like urban river water
- BAN is extremely clean
- NP also looks like clean river water
- BP microlayer and bulk waters are different

Major differences in fluorescence between microlayer and bulk waters may be biological rather than anthropogenic → may make tracking anthropogenic signals difficult

Future Work & Conclusions

- Chemical surface microlayers are observed in LID systems in Melbourne, Australia
- These microlayers concentrate pollutants (petroleum hydrocarbons and trihalomethanes)
 → surface skimmers like rolling-drums might be effective for 1st order pollutant removal (extending the life of the biofilter)
- Excitation-emission spectroscopy can detect differences between surface and microlayer waters in LID systems
 - \rightarrow these fluorescent differences may reflect biological processes like algal growth rather than anthropogenic inputs
- Further work is needed to evaluate the utility of the B (tyrosine-like) peak as a tracer for anthropogenic inputs
- The study could also benefit by being expanded (geographically US) and/or in terms of the micropollutants assessed (estrogenic compounds, pesticides, etc)
- It would be interesting to evaluate the constituents in microlayer vs bulk waters over a diurnal cycle and/or along a treatment train (sed. basin wetland biofilter)
- Mixing effects on microlayer stability & pollutant concentrations should be explored

Spatial and Temporal Variability in Urban Stormwater Pesticide Conc.

Ana Deletic *et al.* (Monash University)

Wolfgang Gernjak *et al.* (U of Queensland)

Meg Rippy et al. (UCI)

Part of a Large Dataset: many other variables Multi-year sampling effort (2011 – 2013 ... still ongoing) Wide geographic footprint (8 catchments across 3 Australian states)

Sampling Locations: Stormwater Pesticide Conc.

8 Sites: <u>sampled 2011-2013</u>

- Queensland (QLD): - Makerston (MA) commercial: SD near high-rises - Fitzgibbon (FG) residential MD: SD receives animal waste
- New South Whales (NSW): - Orange (OR) residential: stormwater (indirect potable reuse) - Ku-ring-gai (KU)
 - residential LD: SD near sports oval - Hornsby (HO) commercial: shops and restaurants
- Victoria (VIC): - Industrial site (IND) industrial: petrol depot
 - Smith Street (SS) commercial: shops + industrial history
 - Banyan Creek (BAN) residential: newer (1970's)

Pesticide Variability in Stormwater

Stormwater samples were analyzed for 37 pesticides

9 were tested for infrequently (not evaluated here)

17 were never detected

Final Dataset: 11 pesticides were measured (and occasionally detected) across all sites

Box widths represent the number of samples with pesticide detects

AU pesticide concentrations are low relative to global averages

Pesticide Variability in Stormwater

Stormwater samples were analyzed for 37 pesticides

9 were tested for infrequently (not evaluated here)

17 were never detected

Final Dataset: 11 pesticides were measured (and occasionally detected) across all sites

Box widths represent the number of samples with pesticide detects

AU pesticide concentrations are low relative to global averages

Project Goals

Evaluate the following:

Is variability in pesticide detection and/or conc. in stormwater:

- catchment specific?

Are specific catchment features (land use, catchment area, total imperviousness, etc.) linked to particular pesticide fingerprints?

- time dependent?

Do we see shifts in pesticide fingerprints reflecting bans or changes in usage preference?

- related to pesticide chemistry?

(e.g. K_{ow}, recalcitrance, etc.)

Based on conc. data and reported toxicities for different pesticides can we predict toxicity hotspots? (Compare findings with published toxicity bio-assays?)

Are there proxies for pesticides that are cost effective and can be used for routine monitoring? (fluorescence, TSS, etc)

Project Goals

Evaluate the following:

Is variability in pesticide detection and/or conc. in stormwater:

```
- catchment specific?
```

Are specific catchment features (land use, catchment area, total imperviousness, etc.) linked to particular pesticide fingerprints?

```
- time dependent?
```

Do we see shifts in pesticide fingerprints reflecting bans or changes in usage preference?

```
- related to pesticide chemistry?
```

(e.g. K_{ow}, recalcitrance, etc.)

Based on conc. data and reported toxicities for different pesticides can we predict toxicity hotspots? (Compare findings with published toxicity bio-assays?)

Are there proxies for pesticides that are cost effective and can be used for routine monitoring? (fluorescence, TSS, etc)

Heat Map of Pesticide Conc. (color: log ug/L)

A significant fraction of pesticide variability is either catchment (M1) or catchment and time (M2) specific Sites: IND, HO (2012)

Future Work & Conclusions

- Stormwater pesticide variability is strongly linked to sample catchment and sample year (> 70% variability explained)

 \rightarrow There were no significant state specific or month specific patterns

- Catchment characteristics and use patterns should be evaluated to identify possible correlates with observed spatial and temporal patterns (M1 and M2)
- Develop a timeline of local/regional pesticide management decisions (HO)
 → Did HO management change roadside pesticide use in 2012?
 → Could this reflect an earlier change that is only manifesting in 2012?
 → Were there infrastructure changes that could have caused the shift?
- Pesticide heatmaps weighed by toxicity to evaluate potential toxicity hotspots
- Explore possible, cost effective, proxies for detecting pesticides in stormwater across all catchments