Are Fecal Indicator Bacteria Like Salt?: conservative tracer modeling

& resistor theory in Newport Bay, California
UCT Water - PIRE | @852 Megan A. Rippy’, Ashley Ciglar, Stanley B. Grant %

Partnerships For International Research Water Boal‘dS

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

University of California, Irvine

INTRODUCTION METHODS: MODEL
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> Salinity & FIB were measured — 0.4l « Rho2: 0.62 0 ™ < Both models capture a large fraction of data CONC LUS I ONS
along 10 dry weather transects S 7« Rho2: 061 Y variability (> 60%; Fig. 5)
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> Each transect had 8 sites (Fig. 1) : ® - < Residual advection (M1) did not improve fits . _ o .
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shore (3X) & with depth (ZX; Flg 2) o ' ‘ | 0 0.2 . 0.4 < Fig. 5: ( Left) Freshwater fraction data & model predictions. Rho tracers (llke freShwater) can be modeled using resistor theory
F'g 1: (Above) Newport Bay map Freshwater Fraction Data squared, a nonparametric R? equivalent, is reported.
- Salinity data were expressed as 001 02 03 Freshwater > Total coliforms behave like salt. This implies that some FIB are
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- 0 =saline, 1 = fresh ol
c : . . : .
8= -5 > Resistor theory assumptions are met: > Passive tracer modeling of Newport Bay coliforms suggests that
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