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Abstract The objective of this study is to cross-validate 34 Coupled Model Intercomparison Project Phase
5 (CMIP5) historical simulations of precipitation against the Global Precipitation Climatology Project (GPCP)
data, quantifying model pattern discrepancies, and biases for both entire distributions and their upper tails.
The results of the volumetric hit index (VHI) analysis of the total monthly precipitation amounts show that
most CMIP5 simulations are in good agreement with GPCP patterns in many areas but that their replication of
observed precipitation over arid regions and certain subcontinental regions (e.g., northern Eurasia, eastern
Russia, and central Australia) is problematical. Overall, the VHI of the multimodel ensemble mean andmedian
also are superior to that of the individual CMIP5 models. However, at high quantiles of reference data (75th
and 90th percentiles), all climate models display low skill in simulating precipitation, except over North
America, the Amazon, and Central Africa. Analyses of total bias (B) in CMIP5 simulations reveal that most
models overestimate precipitation over regions of complex topography (e.g., western North and South
America and southern Africa and Asia), while underestimating it over arid regions. Also, while most climate
model simulations show low biases over Europe, intermodel variations in bias over Australia and Amazonia
are considerable. The quantile bias analyses indicate that CMIP5 simulations are even more biased at high
quantiles of precipitation. It is found that a simple mean field bias removal improves the overall B and VHI
values but does not make a significant improvement at high quantiles of precipitation.

1. Introduction

Numerous studies have emphasized that water resources are sensitive to climate change, and thus, water
resources management and planning strategies should be adjusted accordingly [e.g., Seager et al., 2007;
Stoll et al., 2011; Sivakumar, 2011; Cayan et al., 2008; Wood et al., 1997]. One of the key climate variables is
precipitation, which plays a dominant role in the hydrologic cycle. Developing future water resources
management and planning strategies thus requires estimation of current and future precipitation magnitude
and variability [Wehner, 2013].

In the past several decades, global climate models have been used to estimate future projections of precipitation
[Intergovernmental Panel on Climate Change (IPCC), 2007]. However, these projections are inherently uncertain
and often are difficult for decision makers to interpret [e.g., Liepert and Previdi, 2012; Reichler and Kim, 2008;
Brekke and Barsugli, 2012; Schubert and Lim, 2013; Feddema et al., 2005; Min et al., 2007]. Quantification of
biases and uncertainties in climate simulations of precipitation thus is fundamental to understanding the
reliability of climate simulations for future water resources management. Gleckler et al. [2008] introduced
several metrics for performance analysis of climatemodels and emphasized the need to go beyond themean
statistics for comprehensive analysis of climate model performance. Moise and Delage [2011] and Schaller
et al. [2011] subsequently presented alternative approaches andmetrics for evaluating seasonal precipitation
simulations. AghaKouchak and Mehran [2013] introduced a number of volumetric indicators for validation
and verification of climate model simulations.

Since the inception of the of the Coupled Model Intercomparison Project Phase 3 (CMIP3) by the World Climate
Research Programme Working Group on Coupled Modelling, evaluation of coupled ocean-atmosphere simula-
tions of historical climate relative to available observational data has become an especially strong scientific focus
[e.g., Bony et al., 2006]. Indeed, future developments and improvements in global climate models (GCMs) rely
heavily on their rigorous and informative validation.
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Generally, climatemodel simulations are known for poor representation of frontal, convective, andmesoscale
processes [Van Weverberg et al., 2013]. Numerous studies have evaluated various aspects of precipitation in
the CMIP3 model simulations. Phillips and Gleckler [2006], for example, evaluated CMIP3 simulations of
seasonal mean continental precipitation amounts and concluded that many of these differed markedly from
several observational estimates. They also noted that the ensemble mean model precipitation was generally
closer to the observations than that of any individual CMIP3 model. Several studies focused on the common
errors and/or frequency and intensity of CMIP3 daily precipitation simulations [e.g., Dai, 2006; Sun et al., 2007;
Stephens et al., 2010; Brown et al., 2010]. Dai [2006] evaluated the mean spatial patterns, precipitation
intensity, frequency, and diurnal cycle. The results showed that many climate models simulated unrealistic
double Intertropical Convergence Zone precipitation patterns, though most models captured the overall pre-
cipitation pattern. Furthermore, Dai [2006] showed that the CMIP3 simulations produce light rain (1 to 10mm)
too frequently [see Brown et al., 2010; Stephens et al., 2010; Wilcox and Donner, 2007; Sun et al., 2007].

Brown et al. [2010] demonstrated that models capture the synoptic regimes well and concluded that un-
certainties in precipitation simulations are due to problems in simulating the characteristics of precipitation
within different synoptic regimes. In a recent study, Catto et al. [2013] argued that climate models often
underestimate frontal precipitation estimates. Biases have been reported in model precipitation simulations
from warm clouds, associated with unrepresentative microphysical parameterizations [Lebsock et al., 2013].
Wehner et al. [2010] showed that many climate models underestimated 20 year return values of precipitation
and suggested increasing the horizontal resolution could improve estimation of extremes. Ghan et al. [2002]
showed that improving representation of subgrid variability and surface topography has a significant positive
impact on model precipitation simulations [see also Qian et al., 2010].

Following upon CMIP3, the current Coupled Model Intercomparison Project Phase 5 (CMIP5) includes an
unprecedented suite of coordinated simulations of historical and future-climate scenarios [Taylor et al., 2012]
that are designed to facilitate consideration of the wide range of scientific issues to be addressed in the
forthcoming Intergovernmental Panel on Climate Change Fifth Assessment Report. The CMIP5 climate sim-
ulations are archived by institutional participants in the Global Organization for Earth System Science Portals
that is coordinated by the U.S. Department of Energy’s Program for Climate Model Diagnosis and
Intercomparison. A comprehensive description of the detailed numerical, dynamical, and physical properties
of the CMIP5 models is now in progress [Guilyardi et al., 2013].

In a recent study, Liu et al. [2012] evaluated the variability of CMIP5 precipitation simulations and their response
to temperature using satellite data and showed that there is generally good agreement (correlation) between
model simulations and satellite-inferred observed precipitation anomalies over land, both in the Tropics and
globally. In addition, Sillman et al. [2013] evaluatedmodels’ performance in simulating precipitation extremes at
1–5day time scales. Hirota and Takayabu [2013] investigated reproducibility of observed precipitation distri-
bution in CMIP5 relative to CMIP3 simulations over the tropical oceans. They showed ensemble mean of CMIP5
simulations exhibited slightly higher skill score compared to CMIP3 ensemblemean. Gaetani and Mohino [2013]
studied the decadal predictability of CMIP5 simulations of the Sahel precipitation and concluded that predictive
skills of CMIP5 precipitation simulations vary significantly frommodel tomodel. Kumar et al. [2013] showed that
the CMIP5 ensemblemean precipitationmatched very well with that of ground-based observations, while there
were substantial biases in the simulation of regional precipitation trends. A number of other studies assessed
past and future changes in precipitation based on CMIP5 simulations at regional or global scales [e.g., Chadwick
et al., 2013; Joetzjer et al., 2013; Hao et al., 2013; Kelley et al., 2012; Kharin et al., 2013; Polson et al., 2013].

The present study evaluates CMIP5 historical simulations of continental precipitation against the Global
Precipitation Climatology Project (GPCP) monthly mean observational estimates [Adler et al., 2003] using
several quantitative statistical measures. This model evaluation focuses on the years 1979–2005, a period for
which long-term and gauge-adjusted satellite observations are available. The remainder of this paper is or-
ganized into three sections. The observational data sets are briefly introduced in section 2, while section 3 is
devoted to methodology and results. Summary remarks and conclusions are included in Section 4.

2. Data Sets

The GPCP reference data set [Adler et al., 2003] is derived from merged satellite-precipitation data that are
bias corrected using thousands of continental rain-gauge observations. The GPCP land algorithm is primarily
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based on microwave scattering estimates from low Earth orbit satellites, and geosynchronous infrared
estimates. Additional precipitation information is integrated based on data from the Television and
Infrared Observation Satellite Operational Vertical Sounder, and outgoing longwave radiation mea-
surements [Adler et al., 2003]. The data set is available as a monthly time series from 1979 onward.
GPCP data sets have been validated and widely used in numerous studies [e.g., Bolvin et al., 2009;
Huffman et al., 2009]. The ground-based data are assembled by the Global Precipitation Climatology
Centre [Rudolf et al., 1994] of the Deutscher Wetterdienst and by the National Oceanic and Atmospheric
Administration Climate Prediction Center and used for bias correction of the final product (see Easterling [2013]
for the distribution of gauges).

In this study, 34 CMIP5 historical simulations of monthly mean precipitation for the period 1979–2005, and
their ensemble mean and median, are validated against the GPCP observations. Because of lack of reference
gauge data across oceans, GPCP data over oceans are not bias adjusted. One cannot evaluate biases in CMIP5
simulations with a reference data set having unknown bias. For this reason, this study is limited to evaluation
of CMIP5 simulations overland where GPCP data are bias adjusted using thousands of ground-based gauge
data [Adler et al., 2003].

All CMIP5 precipitation simulations and GPCP data are regridded onto a common 2×2° grid. Table 1 summa-
rizes the CMIP5 models considered in this study. In addition, the results for both the multimodel ensemble
mean and median are provided, since the latter is less sensitive to statistical outliers than the former.

Table 1. CMIP5 Climate Models and Summary Statistics of Global Bias (B) and Volumetric Hit Index (VHI) Before and After
Mean-Field Bias Adjustment (After Bias Adjustment B= 1 for All Models)a

Climate Models

Original Data After Bias Adjustment

B VHl VHl

BCC-CSM1-1 0.97 0.71 0.79
CanESM2_esm 0.76 0.66 0.76
CanESM2 0.77 0.66 0.76
CCSM4 1.08 0.78 0.81
CESM1-BGC_esm 1.06 0.78 0.81
CESM1-CAM5 0.94 0.72 0.79
CESM1-WACCM 1.04 0.73 0.79
CNRM-CM5 0.90 0.71 0.79
CSIRO-ACCESS1-0 0.91 0.73 0.79
CSIRO-Mk3-6-0 0.93 0.69 0.77
FGOALS-g2 1.10 0.78 0.81
FGOALS-s2 0.83 0.67 0.76
GFDL-CM3 0.92 0.72 0.79
GFDL-ESM2G_esm 1.04 0.73 0.78
GFDL-ESM2M_esm 1.05 0.73 0.78
GFDL-ESM2M 1.06 0.74 0.78
GISS-E2-H 0.96 0.69 0.78
GISS-E2-R 0.96 0.71 0.79
HadGEM2-CC 0.88 0.71 0.78
HadGEM2-ES_esm 0.91 0.73 0.79
HadGEM2-ES 0.90 0.72 0.78
INMCM4_esm 0.93 0.74 0.80
IPSL-CM5A-LR_esm 0.77 0.67 0.77
IPSL-CM5A-LR 0.77 0.67 0.77
IPSL-CM5A-MR 0.79 0.68 0.77
IPSL-CM5B-LR 0.83 0.62 0.74
MIROC5 0.99 0.73 0.79
MIROC-ESM_esm 1.14 0.78 0.81
MIROC-ESM 1.17 0.78 0.82
MPI-ESM-LR_esm 1.15 0.78 0.82
MPI-ESM-P 0.88 0.72 0.79
MRI-CGCM3 0.88 0.73 0.79
MRI-ESM1_esm 0.84 0.68 0.77
NorESM1-M 0.85 0.69 0.77

Ensemble Mean 0.89 0.69 0.87
Ensemble Median 0.85 0.76 0.84

aOptimal values of these metrics are all equal to 1.
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It should be noted that the model simulations that are designated as “_esm” are historical simulations of
climate with atmospheric CO2 emissions specified in coupled Earth systems models (ESMs) that include a
prognostic carbon cycle, but with model-specific dynamical vegetation schemes “turned off.” All the other
climate simulations are performedwith coupled ocean-atmospheremodels in which the historical time series
of global atmospheric CO2 concentrations are prescribed. Although the CO2 concentration time series in the
“_esm” runs are not identical to these prescribed values (owing to model-specific differences in converting
CO2 emissions to concentrations), they are effectively constrained to be very similar.

3. Methodology and Results

Several statistical measures are employed to assess climate model-based historical precipitation simulations.
Figure 1 displays the overall biases of climate model simulations relative to observations. The bias B is defined
as the sum of monthly precipitation amount P for each CMIP5 model divided by the sum of the corre-
sponding GPCP observations in each 2 × 2° grid box:

B ¼ ∑ni¼1PCMIP5

∑ni¼1PGPCP
(1)

Here n is the number of exceedances of a specified local monthly (daily) precipitation threshold t (which in
this case is set equal to 1mm/d), while, for simplification, the index i signifying each month in the 1979–2005
time series is not included (i.e., PCMIP5 = PCMIP5i and PGPCP = PGPCPi). A bias value above (below) 1 thus indicates
an aggregate model overestimation (underestimation) of the monthly GPCP precipitation amounts for a
particular grid box.

In the Figure 1 mappings of B, the color green indicates where there is little simulation bias, while red (blue)
indicates large positive (negative) bias relative to GPCP data (white areas indicate no data in either obser-
vations or model simulations). This pertains to most model simulations of precipitation over the eastern

Figure 1. Bias (with optimal value = 1) of selected CMIP5 precipitation simulations, and of their ensemble mean andmedian, all with respect
to GPCP observations. White-colored areas indicate “NaN”—undefined or no values.
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United States and northern Europe and Asia, but many show a large positive bias (as high as ~ 2) in regions of
complex topography such as western North and South America, and southern Africa and Asia, as was also
noted for CMIP3 models by Phillips and Gleckler [2006]. In contrast, most models underestimate precipitation
over the Saharan and central Asian deserts. Australia and Amazonia are other locations where there are
substantial variations in both the sign and magnitude of the biases across individual simulations. On the
other hand, the GPCP data may be subject to biases due to the limited availability of ground-based
gauge data for bias correction and the limitations of satellite data in estimating orographic precipitation
[Sorooshian et al., 2011; Mehran and AghaKouchak, 2014].

In Figure 1, it is also noteworthy that the spatial patterns of the biases of the ensemble mean and median
simulations are similar (bottom right panels) and over several regions (e.g., Australia and the Americas) are of
lower magnitude than the biases of most of the individual model simulations. From comparing global-average
biases B summarized in Table 1; however, the overall global bias of a number of the CMIP5 simulations is seen to
be closer to the optimum value of 1 than is that of the ensemble mean (B=0.89) and median (B=0.85).

It is well known that the bias is not necessarily constant throughout a distribution function but may change at
different quantile levels. To further investigate precipitation biases in the CMIP5 simulations, the
quantile bias (QBt), defined as the ratio of monthly precipitation amounts in each simulation to that of
the GPCP observations above a specified threshold t (e.g., the 75th percentile of all the local monthly
values), can be calculated in each 2 × 2° grid box:

QBt ¼ ∑ni¼1 PCMIP5jPCMIP5 ≥ tð Þ
∑ni¼1 PGPCP PGPCP ≥ tÞjð (2)

Here QBt= 1 indicates no bias in the simulations, whereas a value above (below) 1 corresponds to a climate
model’s overestimation (underestimation) of precipitation amount above the specified threshold t, with
respect to that of the GPCP observations. Figure 2 displays QBt values, computed for the 75th percentile

Figure 2. Quantile bias (t= 75 percentile, QB75 with optimal value = 1) maps for selected CMIP5 precipitation simulations, and for their en-
semble mean and median, all with respect to GPCP observations.
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(precipitation values above t = 75% of the reference data), in the CMIP5 simulations. This figure
indicates that the climate model biases apparent in Figure 1 are generally accentuated in the upper
tail (i.e., > 75% quantile) of the GPCP precipitation distribution. While individual CMIP5 models
behave somewhat differently from one another, most of their simulations underestimate heavier
precipitation amounts over large areas (e.g., Eurasia, Middle East, and northern China), while overestimating
them only in certain limited regions (e.g., Amazonia, Central Africa, and United States). Given this general
behavior, it is not surprising that the multimodel ensemble mean and median also show large negative biases
for observed precipitation amounts> 75% quantile of the distribution. Such negative biases are even more
pronounced for P amounts> 90% of the distribution (figure not shown for brevity).

Bias and quantile bias describe the overall ratio of simulations over observations and do not provide information
on the grid-scale matching of simulated precipitation relative to missed precipitation based on reference obser-
vations. The volumetric hit index [AghaKouchak et al., 2011], which measures the volume of precipitation above
the threshold (t) detected correctly by climatemodels with respect to the total simulated andmissed precipitation
(based on GPCP), can provide such a measure of model performance [Mehran and AghaKouchak, 2014]. For
t= 0 and t> 0, the VHI in each 2 × 2° grid box is defined as [AghaKouchak et al., 2011]

for t ¼ 0 VHI ¼ ∑ni¼1 PCMIP5jPCMIP5 > 0 and PGPCP > 0ð Þ
∑ni¼1 PCMIP5jPCMIP5 > 0 and PGPCP > 0ð Þ þ ∑ni¼1 PGPCPjPGPCP > 0 and PCMIP5 ¼ 0ð Þ

for t > 0 VHI ¼ ∑ni¼1 PCMIP5jPCMIP5 ≥ t & PGPCP ≥ tð Þ
∑ni¼1 PCMIP5jPCMIP5 ≥ t and PGPCP ≥ tð Þ þ ∑ni¼1 PGPCPjPGPCP ≥ t and PCMIP5 < tð Þ (3)

where PCMIP5 = CMIP5 simulations, PGPCP =GPCP observations, n=number of exceedances above threshold t.
The ideal VHI score is 1, indicating perfect simulation skill, while 0 corresponds to no skill. In this study, VHI is

Figure 3. Volumetric hit index (VHI) for t= 0 (with optimal value = 1) maps for selected CMIP5 precipitation simulations, and for their ensem-
ble mean and median, all with respect to GPCP observations.
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computed for the entire distribution of precipitation (t= 0) and for values above the 75th percentile of the
observations (t≥ 75 percentile of GPCP). Figure 3 presents the VHI when all precipitation data are included
in the analysis (t=0); white areas indicate no data below the choice of threshold t in either climate model simu-
lations or observations. There is generally good agreement between model simulations and GPCP observations
over many areas, especially in moist tropical regions such as Amazonia and southern Africa, and in temperate lat-
itudes of Eurasia and North American, consistent with the findings of Liu et al. [2012]. However, there are obvious
discrepancies not only over arid regions, especially northern Africa and the Middle East, but also the southwest-
ern U.S. and Australia. From Figure 3, the ensemble mean and median appear to be superior to the individual
climate models in reproducing the main GPCP precipitation patterns (see also Table 1 for global-average VHI
values of the CMIP5 models and their ensemble mean and median).

It is acknowledged that the VHI is a skill score which assumes that a “perfect” model will be able to recreate
the observations at each grid. However, the CMIP5 historical runs have large internal variability in precipita-
tion, and one cannot expect the models to precisely reproduce precipitation observations, since they are not
forced with prescribed, historical sea surface temperatures. Nevertheless, the VHI still provides valuable in-
formation as to what extent model simulations can capture historical satellite-based gauge-adjusted obser-
vations. Here the main purpose of using VHI is to show whether climate models, relative to each other, are
consistent with observations. As shown, over many regions, many climate model simulations exhibit high VHI
scores indicating reasonable consistency with observations.

Figure 4 displays VHI for the 75th percentile threshold of the observations (hereafter, VHI75). When consid-
ering only data above this threshold, the performance of most models is seen to decrease substantially,
indicating the presence of systematic biases in the CMIP5 simulations at higher quantiles. The VHI75 maps
show that except over parts of high-latitude Eurasia, temperate North America, the lower Amazon, south-
east Asia, and Central Africa, the model simulations lack skill above the 75% quantile. This is even more so
for VHI at the 90th percentile threshold (figure not shown). It should be emphasized, however, that a low

Figure 4. Volumetric hit index for t= 75 percentile VHI75 (with optimal value = 1) for selected CMIP5 precipitation simulations, and for their
ensemble mean and median, with respect to GPCP observations.
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value of VHI (or VHI75) does not necessarily imply the absence of simulated precipitation but only that the
models are simulating amounts below the local threshold (here the 75th percentile) of the GPCP reference
observations. The results of both the VHI and QBt analyses confirm that there are biases in climate simu-
lations of precipitation at higher quantiles, implying that more effort should be focused on improving
precipitation physics in climate models, so as to more realistically simulate extreme values.

As an alternative to model physics improvements, bias adjustment algorithms have been developed to bring
climate simulations closer to observational reference data [e.g., Li et al., 2010; Christensen et al., 2008; Haerter
et al., 2011; Dosio and Paruolo, 2011; Xu and Yang, 2012]. Bias adjustment of global model simulations is
necessary in order to supply more realistic estimates of precipitation (or other climate variables) to regional-
scale models that can assess the impacts of climate on hydrology or agriculture, for example. The most
common approach involves the removal of the mean-field bias of climate simulations relative to a given
observed data set. Figure 5 plots global average global bias values of all 35 evaluated CMIP5 models for the
thresholds of t=0 (all data), t= 75% (QB75), and t= 90% (QB90) percentiles of observations, both before and
after removal of the mean-field bias. The models are sorted based on their overall bias values for better vi-
sualization. Here the mean-field bias is removed by multiplying the inverse of equation (1) by the original
CMIP5 simulations. Considering all the data, the models exhibit global-average biases B between 0.75 and
1.25 (solid black line in Figure 5), and after mean-field adjustment, this overall bias can be removed (dashed
black line in Figure 5). However, while the mean-field bias adjustment eliminates the overall bias, the figure
indicates that this adjustment does not necessarily reduce the bias associated with a particular high or low
quantile. Figure 5 instead confirms that a simple mean-field bias adjustment only marginally reduces such
quantile biases.

In order to compare the spatial patterns of bias after mean-field bias adjustment, Figure 6 displays QB75 after
removing the mean field bias of model simulations with respect to GPCP data (the bias-adjusted version of
Figure 2). One can see that while some improvements in QB can be achieved through such adjustment, this is
not the case over several areas such as portions of Australia, Africa, Eurasia, and North America. Thus, on
average, CMIP5 models underestimate high quantiles of precipitation even after mean-field bias adjustment.
This result underscores the importance of developing more sophisticated precipitation bias adjustment
techniques, such asWatanabe et al. [2012] andMehrotra and Sharma [2012], that go beyond consideration of
only the mean statistics.

Figure 7 displays the globally averaged VHI, VHI75, and VHI90 of climate model simulations against GPCP data
before and after removal of the mean-field bias. The models are ranked on the x axis based on their overall
VHI for better visualization. Similar to the case of QB, it is seen that VHI values drop substantially as the

Figure 5. Averaged bias (B) and 75th and 90th quantile bias values (QB75 and QB90 , all with optimal values = 1) for selected CMIP5 precip-
itation simulations, and for their ensemble mean and median, both before bias adjustment (solid lines) and after (dashed lines), all with
respect to GPCP reference data.
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threshold increases but that the mean-field bias adjustment significantly improves the VHI of the ensemble
median. Unlike the bias metrics of Figure 5, the VHI values of the ensemble median in Figure 7 are consis-
tently higher than those of the ensemble mean.

Figure 8 displays the spatial patterns of VHI75 of climate model simulations against GPCP data after mean-
field bias removal (i.e., Figure 8 depicts results similar to those shown in Figure 4, but after bias adjustment).

Figure 7. Averaged volumetric hit index (VHI) and 75th and 90th percent quantile values VHI75 and VHI90 (with optimal values = 1) for
selected CMIP5 precipitation simulations, and for their ensemble mean and median, both before bias adjustment (solid lines) and after
(dashed lines), all with respect to GPCP reference data.

Figure 6. Quantile bias (t= 75th percentile, QB75 with optimal value = 1) maps after bias adjustment of CMIP5 precipitation simulations, with
respect to GPCP observations.
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Compared with Figure 4, the VHI values in Figure 8 improve over certain areas, such as the United States,
Amazonia, and Southeast Asia. In these regions, models such as FGOALS_g2_hist, GFDL_ESM2M_hist,
CESM1-BGC_esm, and MIROC show high (~ 1) values of VHI75. Overall, the VHI75 values of the ensemble
mean and median are superior to those of individual models.

4. Summary and Conclusions

Reliable estimates of precipitation are essential for both research and practical applications. CMIP5 climate
simulations provide both historical simulations and future projections of climate variables. Numerous studies
have highlighted that climate simulations are subject to various biases and uncertainties [e.g., Brekke and
Barsugli, 2012]. The objective of this study is to cross-validate CMIP5 historical simulations of precipitation
relative to GPCP reference data, quantifying model pattern discrepancies (VHI metric) and biases (B and QB
metrics) for both entire data distributions and their upper tails. It is acknowledged that observational data
sets, like model simulations, are also subject to uncertainties, including systematic and random sampling
errors [AghaKouchak et al., 2012]; over land, however, the GPCP data set is bias-adjusted using thousands of
rain gauges [Adler et al., 2003], and hence, it should serve as an a suitable reference for evaluation of conti-
nental precipitation in climate models.

From the results of the volumetric hit index (VHI) pattern analysis of the total monthly precipitation amounts,
it is found that most CMIP5 simulations are in fairly good agreement with GPCP observations in many areas,
but model replication of observed precipitation patterns over deserts and certain subcontinental regions (e.g.,
northern Eurasia and central Australia) is problematical. The VHI of themultimodel ensemblemean andmedian
also are found to be superior to most CMIP5 model simulations overall.

Analyses of total biases (B) in CMIP5 simulations reveal that most models overestimate precipitation in re-
gions of steep topography, while underestimating it leeward of the mountains, and over many other arid

Figure 8. Volumetric hit index for t= 75th percentile (VHI75, with optimal value = 1) after bias adjustment of selected CMIP5 precipitation
simulations, all with respect to GPCP observations.
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regions. Moreover, while most climate model simulations show low B values over Europe, there are consid-
erable intermodel variations in bias over Australia and Amazonia.

At high quantiles (> 75% and> 90%) of the distribution of monthly precipitation, the quantile bias (QB)
analyses indicate that CMIP5 simulations show more glaring discrepancies in precipitation amounts with
respect to the GPCP satellite observations. While continuing to overestimate precipitation in regions of steep
topography, the models generally underestimate it in tropical locations such as Amazonia, Central Africa, and
southern Asia, as well as in broad swaths of the extratropics such as Australia, the arid regions of northern
Africa and central Asia, and northern China, Russia, and Canada.

At high precipitation quantiles also, the CMIP5 models show substantially reduced agreement with the pat-
terns of the GPCP reference data (e.g., the VHI75 metric for precipitation above the 75% quantile<< VHI over
the entire distribution). Except over North America, Amazonia, and Central Africa, most CMIP5 simulations are
lacking in predictive skill (VHI75 ~ 0) for the higher tail of the precipitation distribution. Note, however, that a
low VHI75 does not necessarily imply the absence of locally simulated precipitation, only that its amount falls
below the given reference data’s threshold value. In addition, the ensemble mean and median precipitation
at the higher quantiles are found to be superior to the individual climate model simulations when evaluated
by the VHI75, and VHI90 pattern measures, but not by the QB75 and QB90 bias metrics.

These results thus suggest that while today’s climate model simulations are generally in agreement with
satellite-based gauge-adjusted estimates of total monthly precipitation in many areas, they presently are not
well suited for simulating upper quantiles of the precipitation distribution. Such distribution errors, which
have persisted across CMIP phases [e.g., Dai, 2006; Sun et al., 2007; Stephens et al., 2010; Sillmann et al., 2013],
are often characterized by a general tendency for the models to precipitate too frequently in light amounts
but too rarely in the intense downbursts that are occasionally observed. In focusing on the upper tails of
the precipitation distributions, the present study reveals such model intensity errors in a particularly stark
way (e.g., in Figures 2 and 4).

The persistence of these upper tail errors in all the evaluated CMIP5 simulations is indicative of the presence
of general deficiencies in the models. For instance, these systematic precipitation distribution errors do not
seem to be very sensitive to intermodel differences in horizontal resolution (e.g., the MRI-ESM1_esm model,
with a 160 × 320 grid, does not clearly outperform other coarser-resolution models in Table 1). Substantive
differences in error structure also are not apparent between the “_esm” historical simulations with prescribed
CO2 emissions and those with prescribed CO2 concentrations. Thus, it is likely that these systematic precipi-
tation errors are duemore to general model shortcomings in representing the dynamics or physics of climatic
phenomena than to intermodel differences in greenhouse forcings or horizontal resolution.

For example, an ongoing preoccupation of model developers is to improve subgrid-scale parameterizations
of convection, since precipitation errors tend to be especially large in the tropics [e.g., IPCC, 2007]. It is
perhaps less widely appreciated that intense precipitation also often originates in frontal systems [Catto et al.,
2012; Pfahl and Wernli, 2012] and that representative climate models tend to underestimate these
extratropical precipitation events in spite of current abilities to adequately simulate the interaction of
dynamics and moisture at model grid scale [Catto et al., 2010, 2013].

An underestimation or incorrect placement of intense tropical and extratropical precipitation is also clearly
displayed by the CMIP5 simulations analyzed in the present study (e.g., in Figures 2 and 4). Such ubiquitous
precipitation errors suggest that improvements, not only in model convective parameterizations but also in
their representation of subgrid scale cloud microphysical processes that regulate droplet autoconversion,
accretion, and throughfall [Lebsock et al., 2013; Van Weverberg et al., 2013], may be essential for better sim-
ulation of the observed global precipitation distributions.

Once such enhancements of model physics are in place, increases in model resolution are also likely to
contribute to more realistic simulation of precipitation [Wehner et al., 2010; Champion et al., 2011]. This may
be especially true in mountainous regions, where an accurate representation of the interaction of complex
dynamics and steep moisture gradients is difficult to achieve solely through parameterization [e.g., Ghan
et al., 2002; Qian et al., 2010].

Finally, this study demonstrates that while a simple mean field bias removal enhances the overall B and VHI
values, it does not yield much improvement at high quantiles (i.e., QB75, QB90, VHI75, and VHI90). Thus, for
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purposes of climatic impacts studies, it is important to develop more sophisticated techniques for adjusting
the upper tail biases of global precipitation simulations in order to better replicate observed extreme values.
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