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Drought is by far the most costly natural disaster that can lead to widespread impacts, including water and
food crises. Here we present data sets available from the Global Integrated Drought Monitoring and
Prediction System (GIDMaPS), which provides drought information based on multiple drought indicators.
The system provides meteorological and agricultural drought information based on multiple satellite-, and
model-based precipitation and soil moisture data sets. GIDMaPS includes a near real-time monitoring
component and a seasonal probabilistic prediction module. The data sets include historical drought severity
data from the monitoring component, and probabilistic seasonal forecasts from the prediction module. The
probabilistic forecasts provide essential information for early warning, taking preventive measures, and
planning mitigation strategies. GIDMaPS data sets are a significant extension to current capabilities and
data sets for global drought assessment and early warning. The presented data sets would be instrumental
in reducing drought impacts especially in developing countries. Our results indicate that GIDMaPS data sets
reliably captured several major droughts from across the globe.

Design Type(s) observation design • data integration

Measurement Type(s)
meteorological drought index • agricultural drought
index • integrated meteorological and agricultural drought index

Technology Type(s) data transformation

Factor Type(s) observation period • temporal resolution • spatial resolution

Sample Characteristic(s) global location • North America • terrestrial habitat

University of California, Irvine, E4130 Engineering Gateway Irvine, Irvine, CA 92697-2175, USA.

Correspondence and requests for materials should be addressed to A.A. (email: amir.a@uci.edu).

OPEN
SUBJECT CATEGORIES

» Water resources

» Hydrology

Received: 12 November 2013

Accepted: 10 January 2014

Published: 11 March 2014

www.nature.com/scientificdata

SCIENTIFIC DATA | 1:140001 | DOI: 10.1038/sdata.2014.1 1

mailto:amir.a@uci.edu


Background & Summary
A 2007 ministerial summit with representatives from 70 nations, held in Cape Town, South Africa,
recognized the growing problem of drought and its impact on food security and sustainability of water
resources, and highlighted the need for a global drought early warning system1. Drought effects are
incremental and happen over a long period of time, hence receive little attention in early phases2.

Each year droughts result in significant socioeconomic losses and ecological damage across the globe.
Given the growing population and climate change, water and food security are major challenges facing
humanity3–7. Nearly 1 million people perished in East Africa in the mid-eighties because of a major
drought that led to a widespread famine. More recently, in 2010-2011, two events in East Africa and
Southeast Asia affected 9 million people, causing famine in East Africa and significant ecological impacts
in Southeast Asia8,9. Production of adequate food to avoid food crises requires advanced drought early
warning and prediction systems. In particular, a global model is needed that can support regions where
famine and food crisis are prevalent because of economic and social instability and climatic variability10.

In recent years, several research and operational drought monitoring models have been developed.
However, drought warning and prediction systems are still the least developed systems among other
natural disasters primarily because of the complex processes involved in drought onset and development2.
On a regional scale, there are a number of drought monitoring tools tailored for local to continental scale
applications such as, the U.S. Agency for International Development (USAID) Famine Early Warning
System Network (FEWS Net)11, United States Drought Monitor12, African Drought Monitor13, and the
University of Washington Experimental Surface Water Monitor14,15.

In an interconnected world where a drought in the United States, Russia or Australia could affect
global food prices16, a regional perspective to drought monitoring and prediction may not be sufficient.
Currently, few global drought models are available, including the Global Information and Early Warning
System on Food and Agriculture (GIEWS), Humanitarian Early Warning Service (HEWS) by the World
Food Programme (WFP), Global Drought Monitor by the University College London (UCL), the
Standardized Precipitation-Evapotranspiration Index Global Drought Monitor17, and the Global Drought
Portal (GDP) by the United States National Climatic Data Center18. The aforementioned models,
however, do not provide probabilistic forecasts of drought condition for risk assessment (see ref. 2 for a
comprehensive review). For example, the FAO-GIEWS provides monthly briefings on countries under
drought that are facing food crisis. The HEWS gathers drought information from various sources and
summarizes the information into brief descriptions of the current conditions. The UCL and GDP provide
interactive maps of the latest drought condition. While these outputs are valuable, probabilistic seasonal
drought forecasts can substantially improve drought early warning capability.

United Nations Environment Programme (UNEP) report calls for a drought prediction system based
on a comprehensive and integrated approach that would include multiple drought indicators2. While
droughts originate from a deficit in precipitation, an effective drought monitoring and prediction system
should integrate multiple drought-related variables12,19–21. The United Nations (UN) Strategy for
Disaster Reduction (ISDR) argues that an early warning system should have the following features22: (a)
Monitoring and predicting components, (b) Risk knowledge, (c) Disseminating information, and (d)
Response.

Following the above recommendation, the Global Integrated Drought Monitoring and Prediction
System (GIDMaPS) is developed to provide drought information based on multiple drought indicators
and input data sets. GIDMaPS includes a seasonal probabilistic prediction component that supports risk
knowledge. The probabilistic forecasts offer essential information for early warning, preventive measures,
and mitigation strategies. GIDMaPS provides both monitoring and prediction components, as well as a
data dissemination interface.

Methods
GIDMaPS drought monitoring and prediction
The algorithm of the GIDMaPS is schematically illustrated in Figure 1. GIDMaPS integrates precipitation
and soil moisture data from model simulations and remote sensing observations including the Modern-
Era Retrospective analysis for Research and Applications (MERRA-Land23,24), North American Land
Data Assimilation System (NLDAS25,26), Global Land Data Assimilation System (GLDAS27) and the
Global Drought Climate Data Record (GDCDR28). GDCDR combines real-time Precipitation Estimation
from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) satellite data29,30 with
long-term GPCP31 observations using a Bayesian algorithm. Table 1 summarizes the input data sets, their
spatial resolutions, and providers.

GIDMaPS uses three drought indicators for monitoring and prediction: the Standardized Precipitation
Index (SPI32), Standardized Soil Moisture Index (SSI20), and Multivariate Standardized Drought Index
(MSDI33). SPI and SSI are indicators of meteorological and agricultural drought, respectively. Both SPI
and SSI are derived using a nonparametric approach outlined in33. In this method, the marginal
probability distribution of precipitation and soil moisture are computed using the empirical Gringorten
plotting position34. In other words, instead of fitting a parametric distribution function, the probabilities
of observed precipitation and soil moisture are computed empirically. The empirical probabilities are
then standardized as SPI=ϕ�1(pp) and SSI=ϕ�1(ps) where ϕ is the standard normal distribution
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(probability density function), and pp and ps denote the empirical probabilities of precipitation and soil
moisture, respectively.

MSDI provides a composite model based on both precipitation and soil moisture and can be
considered an integrated meteorological and agricultural drought indicator. The nonparametric
framework discussed above, can be extended to a multivariate form for estimation of MSDI33. Denoting
P and S as vectors of precipitation and soil moisture data, the joint distribution of the two variables can be
expressed as: Pr(P≤ p, S≤ s). Throughout this paper, uppercase characters represent random variables,
and lowercase letters express their realizations. The empirical joint probability of precipitation and soil
moisture p(pk, sk) can then be obtained using the multivariate model of the Gringorten plotting
position35: pðpk; skÞ ¼ mk�0:44

nþ0:12 , where mk is the number of occurrences of the pair (pi, si) for pi≤ pk and
si≤ sk, and n is the sample size. The joint empirical probabilities of P and S can be standardized to derive
the MSDI (MSDI=ϕ−1(p)).

As shown in Figure 1, GIDMaPS includes a monitoring component that provides drought information
based on historical observations, and a prediction component for seasonal drought forecasting. The
prediction component of GIDMaPS is based on the concept of the Ensemble Streamflow Prediction (ESP)
method that has been used in numerous hydrology and climate studies36–39. This approach assumes that
historical data from any location are possible scenarios for the future. The GIDMaPS’s prediction
component extends persistence-based drought prediction to a multi-index framework based on multiple

Figure 1. Schematic view of the GIDMaPS algorithm (SPI: Standardized Precipitation Index;

SSI: Standardized Soil Moisture Index; and MSDI: Multivariate Standardized Drought Index).

Input data Variables Source Spatio-temporal resolution

MERRA-Land Precipitation and soil moisture NASA 2/3° × 1/2°, monthly

NLDAS Precipitation and soil moisture NASA 0.125°, monthly

GDCDR Precipitation UCI, GPCP 0.5° & 2.5°, monthly

GLDAS Precipitation and soil moisture NASA 1°, monthly

Table 1. GIDMaPS's input data sets. GDCDR: Global Drought Climate Data Record28;
GLDAS: Global Land Data Assimilation System27; GPCP: Global Precipitation
Climatology Project55; MERRA: NASA Modern-Era Retrospective analysis for Research
and Applications23; NLDAS: North American Land Data Assimilation System25,26;
UCI: University of California, Irvine.
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variables, providing short-term forecasts based on both univariate (SPI, SSI) and multivariate (MSDI)
drought indicators.

Let's assume an n-year climatology is available and drought condition in month m of year n+1 is to be
predicted. GIDMaPS utilizes 6 month accumulated precipitation (APn+1,m) and soil moisture (ASn+1,m)
for month m of year n+1 as predictants:

APnþ1;m ¼ Pnþ1;m�5 þ Pnþ1;m�4 þ Pnþ1;m�3 þ Pnþ1;m�2 þ Pnþ1;m�1 þ Pnþ1;m ð1Þ
ASnþ1;m ¼ Snþ1;m�5 þ Snþ1;m�4 þ Snþ1;m�3 þ Snþ1;m�2 þ Snþ1;m�1 þ Snþ1;m ð2Þ
Here, the terms Pn+1,m and Sn+1,m refer to precipitation and soil moisture in the target month m (1-month
lead). The other terms are initial conditions for the target month predictions (for m¼ 1 initial conditions
will be sampled from year n). In a persistence-based model, predictions of Pn+1,m and Sn+1,m for the target
month m can be sampled based on n previous observations of precipitation and soil moisture from the
climatology:

APi
nþ1;m ¼ Pnþ1;m�5 þ Pnþ1;m�4 þ Pnþ1;m�3 þ Pnþ1;m�2 þ Pnþ1;m�1 þ Pi;m; i ¼ 1; ¼ ; n ð3Þ

ASinþ1;m ¼ Snþ1;m�5 þ Snþ1;m�4 þ Snþ1;m�3 þ Snþ1;m�2 þ Snþ1;m�1 þ Si;m; i ¼ 1; ¼ ; n ð4Þ
Having AP1,m,…,APn,m and AS1,m,…,ASn m from equations 3 and 4, the MSDIi can be computed as:

MSDIi ¼ PðAP�APi
nþ1;m;AS�ASinþ1;mÞ; i ¼ 1; ¼ ; n ð5Þ

Basically, in this approach, an n-year climatology (historical observations) leads to an n-member
ensemble. GIDMaPS uses the ensemble median as a measure of drought severity. Having an ensemble of
predictions, GIDMaPS offers the probability of drought occurrence for any given drought threshold. For
example, for a standardized index (e.g., SPI, SSI, MSDI), the occurrence probability of drought below a
certain threshold can be estimated as the number of ensemble members nx below the choice of threshold
divided by the total number of members (nx/n). Source code is available from the figshare record
associated with this publication (Data Citation 1).

Standardized index D-scale Description

−0.50 to −0.79 D0 Abnormally dry

−0.80 to −1.29 D1 Moderate drought

−1.30 to −1.59 D2 Severe drought

−1.60 to −1.99 D3 Extreme drought

−2.0 or less D4 Exceptional drought

Table 2. Drought severity information in both the original standardized scale and their
corresponding D-scale.

Data records Availability Resolution

MERRA-based SPI, SSI and MSDI 1980-present 2/3° × 1/2°

NLDAS-based SPI, SSI and MSDI 1979-present 0.125°

GDCDR-based SPI 1980-present 0.5° & 2.5°

GLDAS-based SPI, SSI and MSDI 1949-present 1°

Table 3. GIDMaPS's output data records. GDCDR: Global Drought Climate Data Record;
GLDAS: Global Land Data Assimilation System; MERRA: NASA Modern-Era
Retrospective analysis for Research and Applications; MSDI: Multivariate Standardized
Drought Index; NLDAS: North American Land Data Assimilation System; SPI:
Standardized Precipitation Index; SSI: Standardized Soil Moisture Index.
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Data Records
GIDMaPS's data records are standardized drought indices in which a negative (positive) value indicates a
relatively dry (wet) spell. The monitoring component of GIDMaPS provides information on drought
severity in both the original standardized scale and the so-called D-scale12 (see Table 2). The prediction
component offers probability of drought occurrence computed for different drought severity levels. For
example, the prediction component provides the probability of a drought index below −0.8 or D1 drought
severity.

GIDMaPS data sets are available to the public through an unrestricted repository at http://dx.doi.org/
10.6084/m9.figshare.853801 (Data Citation 1) in a simple ASCII format (Longitude, Latitude, Drought
Severity). These data sets provide a static representation of the data at the time of publication, as a
complement to the periodically updating data distribution system available at http://drought.eng.uci.edu/.
The data distribution system delivers both graphical images and raw data. Table 3 summarizes the
GIDMaPS drought information outputs. The prediction data sets provide 1 to 6 month lead forecasts
based on the indices shown in Table 3, and from the last monitoring data available. The system runs on a
daily basis and updates the data record upon availability of new input data sets (Table 1).

Technical Validation
Sample drought monitoring outputs based on GIDMaPS indicators are presented in Figure 2. The three
rows in Figure 2 display global drought information based on SPI, SSI and MSDI for 2010 and 2011. As
shown, the 2010 Amazon drought40, 2010 Russian drought16, 2011 Texas-Mexico drought41 and 2011
East Africa drought9 are well captured by GIDMaPS.

For events shown in Figure 2, the 2 month lead drought predictions are presented in Figure 3. Notice
that the scales of the two figures are different. The monitoring component provides drought severity,
whereas the prediction component offers the probability of drought occurrence computed, as described in
the Methods section. It is worth pointing out that probability of drought occurrence can be computed for
different drought severity thresholds (Methods Section). Figure 3, for example, provides probability of

Figure 2. Drought monitoring based on multiple indicators: Standardized Precipitation Index (SPI; 1st row);

Standardized Soil Moisture Index (SSI; 2nd row); and Multivariate Standardized Drought Index (MSDI; 3rd

row). The SPI shows meteorological drought, whereas the SSI represents agricultural drought. MSDI is a

composite model of both meteorological-agricultural drought conditions. Input data sets include MERRA-

Land precipitation and soil moisture fields.
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drought occurrence for the D1 threshold, meaning the probabilities correspond to D1-D4 droughts. The
results indicate that the regions where drought is predicted with high probability in Figure 3 are
consistent with the observed droughts shown in Figure 2 (compare the Amazon and Russia in 2010 and
Texas-Mexico and East Africa in 2011 in Figures 2 and 3).

GIDMaPS data sets provide drought predictions for different lead times. For August 2012, for
example, Figure 4 demonstrates 2 and 4 month lead predictions of drought for D1 and D2 severity levels.
In 2012, the United States experienced a major drought that led to significant losses (see the top row in
Figure 4). The 2 month lead predictions identify the upcoming drought at both D1 and D2 severity levels.
While the 4 month lead predictions show signals of the U.S. summer 2012 drought at the D1 level, only
MSDI indicates the possibility of a D2 (or stronger) drought with 4 month lead time (probabilities
ranging from 0.3 to 0.6 in the central and western United States). It is stressed that the dynamical weather
and climate models initiated in April/May 2012 did not indicate a significant drought coming up in
August 201242. This highlights the importance of GIDMaPS seasonal forecasts, providing relatively
reasonable forecasts 2 to 4 month in advance that could be very important for risk assessment and
decision making.

Usage Notes
Drought data records are fundamental to study regional/global changes to trends and patterns of
droughts. GIDMaPS’s data sets listed in Table 3 can be used for a wide variety of applications/studies. For
example, GIDMaPS climate data records can be used to assess the fraction of global land areas under D0
to D4 drought severity levels as displayed in Figure 5. The figure highlights a substantial increase in severe
to exceptional drought in the late nineties as discussed in previous studies (e.g., see ref. 43). The figure
indicates that in the peak time, around 20% of global land areas were in severe to exceptional drought, a
record drought the likes of which has not been experienced since.

A region's drought climatology can also be investigated using GIDMaPS data sets. One can obtain the
fraction of a region/country under drought and assess trends in temporal patterns of areas in drought. In

Figure 3. GIDMaPS 2 month lead drought prediction (probability of occurrence) based on multiple

indicators: Standardized Precipitation Index (SPI; 1st row); Standardized Soil Moisture Index (SSI; 2nd row);

and Multivariate Standardized Drought Index (MSDI; 3rd row). Input data sets include MERRA-Land

precipitation and soil moisture fields.
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Figure 4. 2 and 4 month lead predictions of moderate (D1) and severe (D2) drought conditions for

August 2012.

Figure 5. Fraction of the global land in D0 (abnormally dry), D1 (moderate), D2 (severe), D3 (extreme),

and D4 (exceptional) drought condition (Data: Standardized Precipitation Index data derived from

MERRA-Land).
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a recent study, global trends and spatial patterns of droughts are investigated using GIDMaPS data44.
Additionally, users can evaluate drought duration and severity in historical records. As an example, the
time series of the 6 month SPI for Namibia and Melbourne, derived from GIDMaPS, are presented in
Figure 6. The figure shows that both regions often experience multi-year dry and wet periods. This
information can be used to place a specific drought, such as the Australian Millennium Drought45 (see
1997–2009 in Figure 6), in perspective relative to historical observations. Combined with other data sets
(e.g., global temperature data), GIDMaPS data can be used to assess changes in drought and heatwaves46

or warm/dry, cold/dry conditions47.
GIDMaPS data records can also be of interest to ecologists for studying the effects of historical

droughts on vegetation growth, tree mortality, and ecosystem behavior. Furthermore, water and energy
resources as well as the agricultural sector are sensitive to droughts48–50. The 2012 United States drought,
for example, resulted in over $12 billion in economic loss, and significant indirect effects on the global
food prices51. Seasonal prediction of drought conditions can provide resource managers with valuable
information for decision making and disaster preparedness.

Finally, dynamic models that provide global seasonal drought forecasts exhibit very high uncertainty
and low seasonal prediction skill52–54. It is our vision that drought information should be based on a wide
variety of sources, data, indicators, and models. GIDMaPS provides a different perspective using a
statistical model extended for multivariate drought monitoring and prediction. We stress the purpose of
GIDMaPS is not to replace the currently available dynamic models. Rather, GIDMaPS data sets should be
used as additional source of drought information to improve current capabilities in drought monitoring
and prediction.
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